首页> 外文OA文献 >Recursive autoencoders based unsupervised feature learning for hyperspectral image classification
【2h】

Recursive autoencoders based unsupervised feature learning for hyperspectral image classification

机译:基于递归自动编码器的无监督特征学习用于高光谱图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For hyperspectral image (HSI) classification, it is very important to learn effective features for the discrimination purpose. Meanwhile, the ability to combine spectral and spatial information together in a deep level is also important for feature learning. In this letter, we propose an unsupervised feature learning method for HSI classification, which is based on recursive autoencoders (RAE) network. RAE utilizes the spatial and spectral information and produces high-level features from the original data. It learns features from the neighborhood of the investigated pixel to represent the whole local homogeneous area of the image. In addition, to obtain more accurate representation of the investigated pixel, a weighting scheme is adopted based on the neighboring pixels, where the weights are determined by the spectral similarity between the neighboring pixels and the investigated pixel. The effectiveness of our method is evaluated by the experiments on two hyperspectral datasets and the results show that our proposed method has better performance.
机译:对于高光谱图像(HSI)分类,了解有效的特征以进行区分非常重要。同时,将光谱和空间信息深度结合在一起的能力对于特征学习也很重要。在这封信中,我们提出了一种基于递归自动编码器(RAE)网络的HSI分类的无监督特征学习方法。 RAE利用空间和光谱信息,并根据原始数据生成高级特征。它从被调查像素的邻域中学习特征,以表示图像的整个局部均匀区域。另外,为了获得所调查像素的更准确表示,基于相邻像素采用加权方案,其中权重由相邻像素与所调查像素之间的光谱相似度确定。通过在两个高光谱数据集上的实验评估了该方法的有效性,结果表明该方法具有较好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号