首页> 外文OA文献 >Semantic feature-based visual attention model for pedestrian detection
【2h】

Semantic feature-based visual attention model for pedestrian detection

机译:基于语义特征的行人检测视觉注意模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism. Method The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model. Result Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video. Conclusion This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.
机译:客观的视频监控系统下的行人检测一直是计算机视觉研究的热门话题。这些系统广泛用于火车站,飞机场,大型商业广场和其他公共场所。但是,由于背景复杂,行人检测仍然很困难。随着近几年的发展,视觉注意力机制在目标检测与跟踪研究中已引起越来越多的关注,以往的研究取得了实质性的进展和突破。我们提出了一种基于视觉注意机制下语义特征的行人检测新方法。方法:基于语义特征的视觉注意模型是一种时空模型,由静态视觉注意模型和运动视觉注意模型两部分组成。通过将自下而上与自上而下的注意力指导相结合,构造了空间域中的静态视觉注意力模型。根据行人的特征,通过增强基本视觉特征的方向矢量来改进Itti的自下而上的视觉注意模型,以使视觉显着性地图适合行人检测。就行人属性而言,选择肤色作为行人检测的语义特征。采用区域和高斯模型构建肤色模型。然后提出基于皮肤特征的视觉注意指导,以完成自上而下的过程。使用从实验中获得的适当权重,将自下而上和自上而下的视觉注意进行线性组合,以在空间域中构建静态视觉注意模型。然后通过时域中的运动特征构建时空视觉注意模型。基于空间域中的静态视觉注意力模型,将帧差方法与光流相结合以检测运动矢量。滤波被应用于处理运动矢量的场。可以通过运动熵评估运动向量的显着性,以使选定的运动特征更适合于时空视觉注意模型。结果选择了标准数据集和实用视频进行实验。实验在MATLAB R2012a平台上进行。实验结果表明,我们的时空视觉注意力模型在各种场景下均表现出良好的鲁棒性,包括室内火车站监控录像和摇曳树叶的室外场景。在行人检测方面,我们提出的模型优于Itti的视觉注意力模型,基于图的视觉显着性模型,四元数傅里叶变换模型的相谱以及Liu的运动通道模型。所提出的模型在测试视频上达到93%的准确率。结论本文提出了一种基于视觉注意机制的行人新方法。提出了一种利用时空和语义特征的时空视觉注意力模型来计算显着性图。基于此模型,可以通过注意转移的焦点来检测行人目标。实验结果验证了所提出的注意模型对行人检测的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号