首页> 外文OA文献 >Decontaminate feature for tracking : adaptive tracking via evolutionary feature subset
【2h】

Decontaminate feature for tracking : adaptive tracking via evolutionary feature subset

机译:去污特征跟踪:通过进化特征子集的自适应跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion et al. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy caused low efficiency and ambiguity caused poor performance. In this paper, an effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, “Curse of Dimensionality” has been avoided whilst the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.
机译:尽管在最近的2-3年中已经提出了各种视觉跟踪算法,但是对于快速运动,变形,遮挡等有效跟踪仍然是一个难题。在复杂的跟踪条件下,大多数跟踪模型没有足够的区分性和适应性。当将组合的特征向量输入到视觉模型时,这可能导致冗余,从而导致效率低下和歧义性,从而导致性能不佳。本文提出了一种有效的跟踪算法来自适应地对每个视频序列的特征进行去污,其中从进化的角度出发,将可视化建模视为一个优化问题。每个特征向量都与一个生物个体进行比较,然后通过经典的进化算法进行净化。通过优化的功能子集,避免了“维数诅咒”,同时提高了视觉模型的准确性。所提出的算法已在具有各种跟踪挑战的几个可公开获得的数据集上进行了测试,并使用多种最新方法进行了基准测试。全面的实验证明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号