首页> 外文OA文献 >Identification of MIR-Flickr near-duplicate images : a benchmark collection for near-duplicate detection
【2h】

Identification of MIR-Flickr near-duplicate images : a benchmark collection for near-duplicate detection

机译:MIR-Flickr近似重复图像的识别:近似重复检测的基准集合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are many contexts where the automated detection of near-duplicate images is important, for example the detection of copyright infringement or images of child abuse. There are many published methods for the detection of similar and near-duplicate images; however it is still uncommon for methods to be objectively compared with each other, probably because of a lack of any good framework in which to do so. Published sets of near-duplicate images exist, but are typically small, specialist, or generated. Here, we give a new test set based on a large, serendipitously selected collection of high quality images. Having observed that the MIR- Flickr 1M image set contains a significant number of near-duplicate images, we have discovered the majority of these. We disclose a set of 1,958 near-duplicate clusters from within the set, and show that this is very likely to contain almost all of the near-duplicate pairs that exist. The main contribution of this publication is the identification of these images, which may then be used by other authors to make comparisons as they see fit. In particular however, near-duplicate classification functions may now be accurately tested for sensitivity and specificity over a general collection of images.
机译:在许多情况下,自动检测接近重复的图像非常重要,例如,检测侵犯版权或虐待儿童的图像。有许多公开的方法可以检测相似和近乎重复的图像。但是,将方法进行客观地比较仍然很不普遍,这可能是因为缺少任何一种比较好的框架。存在已发布的几乎重复的图像集,但通常是较小的,专业的或生成的。在这里,我们根据大量偶然挑选的高质量图像给出了一个新的测试集。观察到MIR-Flickr 1M图像集包含大量的近重复图像后,我们发现了其中的大多数。我们从该集合内公开了一组1,958个近重复集群,并表明这很可能包含几乎所有已存在的近重复对。该出版物的主要贡献是对这些图像的识别,然后其他作者可以使用这些图像进行比较,以使其适合。但是,尤其是现在可以精确地测试几乎重复的分类功能,以针对整个图像集合进行敏感性和特异性测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号