首页> 外文OA文献 >Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos
【2h】

Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos

机译:热图像和可见图像的认知融合,可有效检测和跟踪视频中的行人

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BACKGROUND INTRODUCTION In this paper, we present an efficient framework to cognitively detect and track salient objects from videos. In general, colored visible image in red-green-blue (RGB) has better distinguishability in human visual perception, yet it suffers from the effect of illumination noise and shadows. On the contrary, the thermal image is less sensitive to these noise effects though its distinguishability varies according to environmental settings. To this end, cognitive fusion of these two modalities provides an effective solution to tackle this problem. METHODS First, a background model is extracted followed by two stage background-subtraction for foreground detection in visible and thermal images. To deal with cases of occlusion or overlap, knowledge based forward tracking and backward tracking are employed to identify separate objects even the foreground detection fails. RESULTS To evaluate the proposed method, a publicly available color-thermal benchmark dataset OTCBVS is employed here. For our foreground detection evaluation, objective and subjective analysis against several state-of-the-art methods have been done on our manually segmented ground truth. For our object tracking evaluation, comprehensive qualitative experiments have also been done on all video sequences. CONCLUSIONS Promising results have shown that the proposed fusion based approach can successfully detect and track multiple human objects in most scenes regardless of any light change or occlusion problem.
机译:背景技术在本文中,我们提出了一种有效的框架,可以从视频中认知地检测和跟踪显着物体。通常,红色-绿色-蓝色(RGB)的彩色可见图像在人的视觉感知中具有更好的可分辨性,但是它受到照明噪声和阴影的影响。相反,尽管热图像的可分辨性根据环境设置而有所不同,但热图像对这些噪声效果的敏感性较低。为此,这两种方式的认知融合为解决该问题提供了有效的解决方案。方法首先,提取背景模型,然后进行两步背景扣除,以在可见光图像和热图像中进行前景检测。为了处理遮挡或重叠的情况,即使前景检测失败,也会采用基于知识的前向跟踪和后向跟踪来识别单独的对象。结果为了评估所提出的方法,此处使用了公开可用的色温基准数据集OTCBVS。对于我们的前景检测评估,已经在我们的人工分割的地面真实情况下针对几种最新方法进行了主观和主观分析。为了进行目标跟踪评估,还对所有视频序列进行了全面的定性实验。结论有希望的结果表明,所提出的基于融合的方法可以成功地检测和跟踪大多数场景中的多个人体对象,而不管任何光线变化或遮挡问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号