首页> 外文OA文献 >Neural-based trajectory shaping approach for terminal planetary pinpoint guidance
【2h】

Neural-based trajectory shaping approach for terminal planetary pinpoint guidance

机译:基于神经的轨迹成形方法用于最终行星精确定位制导

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present an approach to pinpoint landing based on what we consider to be the next evolution of path shaping methodologies based on potential functions. Here, we employ Extreme Learning Machine (ELM) theories to devise a Single layer Forward Network (SLFN) that learns the relationship between current spacecraft position and the optimal velocity field required to shape the path to the surface in a fuel efficient fashion. ELM techniques enable fast and accurate training as well as better generalization. The network is trained using open-loop, fuel-efficient trajectories that are numerically generated using pseudo-spectral methods. After test and validation, the SLFN becomes a critical element in the linear guidance algorithm loop. More specifically, a Linear Quadratic Regulator (LQR) is employed to track the optimal velocity field which is naturally defined to be attractive to the landing target. The guidance approach is tested on a simulation environment to evaluate the performance of proposed algorithm. Monte Ca rlo simulations show that the algorithm achieve a low guidance residual error which is less than one meter in position and less than -0.9 m/sec in impact velocity.
机译:在本文中,我们提出了一种精确定位的方法,该方法基于我们认为是基于潜在功能的路径整形方法的下一次发展。在这里,我们采用极限学习机(ELM)的理论来设计单层前向网络(SLFN),该网络学习当前航天器位置与以节油方式塑造到达地面的路径所需的最佳速度场之间的关系。 ELM技术可实现快速准确的训练以及更好的概括性。该网络使用开环,省油的轨迹进行训练,该轨迹使用伪谱方法在数值上生成。经过测试和验证后,SLFN成为线性制导算法循环中的关键要素。更具体地说,采用线性二次调节器(LQR)来跟踪最佳速度场,该速度场自然定义为对着陆目标具有吸引力。该指导方法在模拟环境中进行了测试,以评估所提出算法的性能。蒙特卡罗模拟表明,该算法实现了较低的制导残余误差,其位置误差小于1米,冲击速度小于-0.9 m / sec。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号