首页> 外文OA文献 >Multi-disciplinary shape optimization of an entry capsule integrated with custom neural network approximation and multi-delity approach
【2h】

Multi-disciplinary shape optimization of an entry capsule integrated with custom neural network approximation and multi-delity approach

机译:集成自定义神经网络逼近和多效度方法的入门胶囊的多学科形状优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes a new integrated approach for the multi-disciplinary optimization of a entry capsule’s shape. Aerothermodynamics, Flight Mechanics and Thermal Protection System behaviour of a reference spaceship when crossing Martian atmosphere are considered, and several analytical, semi-empirical and numerical models are used. The multi-objective and multi-disciplinary optimization process implemented in Isight software environment allows finding a Pareto front of best shapes. The optimization process is integrated with a set of artificial neural networks, trained and updated by a multi-fidelity evolution control approach, to approximate the objective and constraint functions. Results obtained by means of the integrated approach with neural networks approximators are described and compared to the results obtained by a different optimization process, not using the approximators. The comparison highlights advantages and possible drawbacks of the proposed method, mainly in terms of calls to the true model and precision of the obtained Pareto front.
机译:本文介绍了一种新的集成方法,用于对进入胶囊的形状进行多学科优化。考虑了参考飞船在穿越火星大气层时的空气热力学,飞行力学和热保护系统行为,并使用了几种分析,半经验和数值模型。在Isight软件环境中实施的多目标,多学科的优化过程可以找到最佳形状的Pareto前沿。优化过程与一组人工神经网络集成在一起,通过多保真度进化控制方法对其进行训练和更新,以近似目标函数和约束函数。描述了通过带有神经网络逼近器的集成方法获得的结果,并将其与通过不同优化过程(不使用逼近器)获得的结果进行了比较。比较突出显示了该方法的优点和可能的缺点,主要体现在对真实模型的调用以及所获得的帕累托前沿的精度方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号