首页> 外文OA文献 >Emulation of expensive simulation model for operation and maintenance of offshore wind farms
【2h】

Emulation of expensive simulation model for operation and maintenance of offshore wind farms

机译:用于海上风电场运营和维护的昂贵仿真模型的仿真

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As wind farms move deeper offshore to tap into stronger and relentless winds, intense wind and wave conditions pose a great challenge in terms of their operation and maintenance (O&M). There are several factors that determine the profitability of offshore wind farms, and the most critical factors among them are the parameters on allocation of maintenance resources. These parameters interact with environmental factors and make it impossible to estimate profitability using simple formulas. On the other hand, existing simulation models, which describe the behaviour of wind farms by using mathematical models of wind, wave, and their effects on O&M, can be extremely detailed resulting in simulations being computationally very expensive. Depending on the number of scenarios to evaluate, it can take up-to several days to complete the computation. In order to address this difficulty, a statistical model fitting approach has been adopted to emulate the behaviour of the computationally expensive simulator. Neural networks, splines, and decision trees are combined to capture numerical and discrete variables and their influence on availability and profitability. This approach is useful because it allows for quick exploration of the space of operating choices, which would be difficult to achieve by repeated simulations due to their computational expense. The performance results show that the statistical model can evaluate hundreds of scenarios per second, and the approximation error is acceptable.
机译:随着风电场向更深的海上移动以利用更强,更强的风,强烈的风浪条件对他们的运营和维护(O&M)构成了巨大挑战。决定海上风电场盈利能力的因素有很多,其中最关键的因素是维护资源分配的参数。这些参数与环境因素相互作用,因此无法使用简单公式估算获利能力。另一方面,通过使用风,浪及其对运维的影响的数学模型来描述风电场行为的现有仿真模型可能会非常详细,从而导致仿真的计算量很大。根据要评估的方案的数量,最多可能需要几天才能完成计算。为了解决此困难,已采用统计模型拟合方法来模拟计算上昂贵的模拟器的行为。神经网络,样条曲线和决策树被组合起来以捕获数值和离散变量及其对可用性和获利能力的影响。这种方法很有用,因为它可以快速探索操作选择的空间,由于重复计算的计算量大,很难通过重复仿真来实现。性能结果表明,该统计模型每秒可以评估数百种情况,并且近似误差是可以接受的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号