首页> 外文OA文献 >Novel direct method on the life prediction of component under high temperature-creep fatigue conditions
【2h】

Novel direct method on the life prediction of component under high temperature-creep fatigue conditions

机译:高温蠕变疲劳条件下构件寿命预测的直接方法

摘要

This paper presents a novel direct method, within the Linear Matching Method (LMM) framework, for the direct evaluation of steady state cyclic behaviour of structures subjected to high temperature – creep fatigue conditions. The LMM was originally developed for the evaluation of shakedown and ratchet limits. The latest extension of the LMM makes it capable of predicting the steady state stress strain solutions of component subjected to cyclic thermal and mechanical loads with creep effects. The proposed iterative method directly calculates the creep stress and cyclically enhanced creep strain during the dwell period for the assessment of the creep damage, and also creep enhanced total strain range for the assessment of fatigue damage of each load cycle. To demonstrate the efficiency and applicability of the method to assess the creep fatigue damage, two types of weldments subjected to reverse bending moment at elevated temperature of 550C are simulated by the proposed method considering a Ramberg-Osgood model for plastic strains under saturated cyclic conditions and a power-law model in “time hardening” form for creep strains during the dwell period. Further experimental validation shows that the proposed direct method provides a general purpose technique for the creep fatigue damage assessment with creep fatigue interaction.
机译:本文提出了一种在线性匹配方法(LMM)框架内的新颖直接方法,用于直接评估高温-蠕变疲劳条件下结构的稳态循环行为。 LMM最初是为评估减震和棘轮极限而开发的。 LMM的最新扩展使其能够预测承受循环热和机械载荷并具有蠕变效应的部件的稳态应力应变解。所提出的迭代方法可以直接计算停留期间的蠕变应力和周期性增强的蠕变应变,以评估蠕变损伤,还可以计算蠕变增强的总应变范围,以评估每个载荷循环的疲劳损伤。为了证明该方法评估蠕变疲劳损伤的效率和适用性,考虑了在饱和循环条件下塑性应变的Ramberg-Osgood模型,通过拟议的方法模拟了两种在550°C高温下承受反向弯矩的焊件。一个“时间硬化”形式的幂律模型,用于停留期间的蠕变应变。进一步的实验验证表明,所提出的直接方法为蠕变疲劳相互作用下的蠕变疲劳损伤评估提供了一种通用技术。

著录项

  • 作者

    Chen Haofeng; Gorash Yevgen;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号