首页> 外文OA文献 >Anomaly detection techniques for the condition monitoring of tidal turbines
【2h】

Anomaly detection techniques for the condition monitoring of tidal turbines

机译:潮汐涡轮机状态监测的异常检测技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Harnessing the power of currents from the sea bed, tidal power has great potential to provide a means of renewable energy generation more predictable than similar technologies such as wind power. However, the nature of the operating environment provides challenges, with maintenance requiring a lift operation to gain access to the turbine above water. Failures of system components can therefore result in prolonged periods of downtime while repairs are completed on the surface, removing the system’s ability to produce electricity and damaging revenues. The utilization of effective condition monitoring systems can therefore prove particularly beneficial to this industry. This paper explores the use of the CRISP-DM data mining process model for identifying key trends within turbine sensor data, to define the expected response of a tidal turbine. Condition data from an operational 1 MW turbine, installed off the coast of Orkney, Scotland, was used for this study. The effectiveness of modeling techniques, including curve fitting, Gaussian mixture modeling, and density estimation are explored, using tidal turbine data in the absence of faults. The paper shows how these models can be used for anomaly detection of live turbine data, with anomalies indicating the possible onset of a fault within the system.
机译:利用海床海流的力量,潮汐能具有巨大的潜力,可提供比风力发电等类似技术更可预测的可再生能源发电方式。然而,操作环境的性质带来了挑战,维护需要进行举升操作以在水面上方接近涡轮机。因此,系统组件的故障可能会导致长时间的停机,而地面维修工作已经完成,这消除了系统的发电能力,并损害了收入。因此,有效状态监控系统的使用可以证明对该行业特别有利。本文探索了使用CRISP-DM数据挖掘过程模型来识别涡轮传感器数据中的关键趋势,以定义潮汐涡轮的预期响应。这项研究使用了安装在苏格兰奥克尼海岸附近的运行中的1兆瓦涡轮机的状态数据。在没有断层的情况下,利用潮汐涡轮机数据,探索了包括曲线拟合,高斯混合建模和密度估计在内的建模技术的有效性。本文展示了如何将这些模型用于异常涡轮机数据的异常检测,其中异常表明系统内故障的可能发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号