首页> 外文OA文献 >Single trial classification of EEG in predicting intention and direction of wrist movement : translation toward development of four-class brain computer interface system based on a single limb
【2h】

Single trial classification of EEG in predicting intention and direction of wrist movement : translation toward development of four-class brain computer interface system based on a single limb

机译:脑电图预测手腕运动意图和方向的单次试验分类:转换为基于单肢的四类大脑计算机接口系统的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brain - computer interfaces (BCI) are paradigms that offer an alternative communication channel between neural activity gene rated in the brain and the users’ external environment. The aim of this paper is to investigate the feasibility of designing and developing a multiclass BCI system based on a single limb movement due to the factor, high dimensional control channels would expand the capacity of BCI application (multidimensional control of neuroprosthesis). This paper also proposes a method to identify the optimal frequency band and recording channel to achieve the best classification result . Twenty eight surface electroencephalography ( EEG ) electrodes are used to record brain activity from eleven subjects whilst imagining and performing right wrist burst point - to - point movement towards multiple directions using a high density montage with 10 - 10 electrode placement locations focusing on motor cortex areas. Two types of spatial filters namely Common average reference (CAR) and Laplacian (LAP) filter have been implemented and results are compared to enhance the EEG signal. Features are extracted from the filtered signals using event related spectral perturbation ( ERSP ) and power spectrum. Feature vectors are classified by k - nearest neighbour ( k - NN) and quadratic discriminant analysis (QDA) classifiers. The results indicate that the majority of the optimum classification results are obtained from features extracted from contralateral electrodes in the gamma band. Based on a single trial, the average of the classification accuracy using LAP filter and k - NN classifier across the subjects in predicting intention and direction of movement is 68% and 62% for motor imagery and motor performance respectively; which is significantly higher than chance. The classification result from the majority of subjects shows that, it is possible and achievable to develop multiclass BCI systems based on a single limb.
机译:大脑-计算机接口(BCI)是一种范式,可在大脑中评估的神经活动基因与用户的外部环境之间提供替代的交流渠道。本文的目的是研究由于该因素而基于单肢运动设计和开发多类BCI系统的可行性,高维控制通道将扩展BCI应用的能力(神经假体的多维控制)。本文还提出了一种确定最佳频段和记录通道的方法,以获得最佳分类结果。二十八个表面脑电(EEG)电极用于记录11位受试者的脑部活动,同时利用高密度蒙太奇对10个电极放置位置集中于运动皮层区域进行想象,并进行右腕爆裂点到点向多个方向的运动。已经实现了两种类型的空间滤波器,即公共平均参考(CAR)和拉普拉斯(LAP)滤波器,并比较了结果以增强EEG信号。使用事件相关频谱扰动(ERSP)和功率谱从滤波后的信号中提取特征。特征向量通过k-最近邻(k-NN)和二次判别分析(QDA)分类器进行分类。结果表明,大多数最佳分类结果是从伽玛带对侧电极提取的特征中获得的。根据一次试验,在运动图像和运动表现方面,使用LAP滤波器和k-NN分类器对受试者进行运动意图和运动方向预测时,分类准确度的平均值分别为68%和62%。这远高于机会。大多数主题的分类结果表明,基于单肢开发多类BCI系统是可能且可实现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号