首页> 外文OA文献 >Architecture, Voltage and Components for a Turboelectric Distributed Propulsion Electric Grid
【2h】

Architecture, Voltage and Components for a Turboelectric Distributed Propulsion Electric Grid

机译:涡轮电分布式推进电网的架构,电压和组件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of a wholly superconducting turboelectric distributed propulsion system presents hide unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.
机译:全超导涡轮电分布式推进系统的发展为航空航天业提供了独特的机遇。但是,从正常导电系统到超导系统的这种转变显着增加了管理电力系统所需的设备复杂性。由于所有组件和系统的技术准备水平(TRL)低,当前的涡轮电分布式推进(TeDP)技术发展受到机载微电网系统的一系列系统级电气集成标准的推动(图1)。尽管实现概念还需要数十年的进步,但当前的系统级研究对于集中技术开发,针对特定技术缺陷以及准确预测概念的可行性和可行性是必要的。对操作电压的性能敏感性的了解以及对非常规机载微电网有利电压调节标准的早期定义将使技术开发的目标更加精确。推进式功率微电网系统必须引入新的飞机配电系统电压标准。所有保护,配电,控制,电源转换,发电和低温冷却设备均受电压调节标准的影响。需要有关所需工作电压和电压调节的信息,以确定用于确定配电和故障隔离设备的尺寸的额定电流和最大电流,开发机器拓扑和机器控制以及所有组件屏蔽和绝缘的物理属性。电压会影响许多组件和系统性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号