首页> 外文OA文献 >Comparison of offshore wind farm layout optimization using a genetic algorithm and a particle swarm optimizer
【2h】

Comparison of offshore wind farm layout optimization using a genetic algorithm and a particle swarm optimizer

机译:遗传算法与粒子群优化器的海上风电场布局优化比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article explores the application of a binary genetic algorithm and a binary particle swarm optimizer to the optimization of an offshore wind farm layout. The framework developed as part of this work makes use of a modular design to include a detailed assessment of a wind farm’s layout including validated analytic wake modeling, cost assessment, and the design of the necessary electrical infrastructure considering constraints. This study has found that both algorithms are capable of optimizing the layout with respect to levelized cost of energy when using a detailed, complex evaluation function. Both are also capable of identifying layouts with lower levelized costs of energy than similar studies that have been published in the past and are therefore both applicable to this problem. The performance of both algorithms has highlighted that both should be further tuned and benchmarked in order to better characterize their performance.
机译:本文探讨了二进制遗传算法和二进制粒子群优化器在海上风电场布局优化中的应用。作为这项工作的一部分而开发的框架利用了模块化设计,包括对风电场布局的详细评估,包括经过验证的解析尾流建模,成本评估以及考虑约束条件的必要电力基础设施的设计。这项研究发现,当使用详细,复杂的评估功能时,两种算法都能够针对均等的能源成本优化布局。与过去已经发表过的类似研究相比,两者都能够以较低的能源成本来识别布局,因此都适用于此问题。两种算法的性能都突出表明,应该对两种算法进行进一步调整和基准测试,以更好地表征其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号