首页> 外文OA文献 >Semi-supervised learning approach for crack detection and identification in advanced gas-cooled reactor graphite bricks
【2h】

Semi-supervised learning approach for crack detection and identification in advanced gas-cooled reactor graphite bricks

机译:半监督学习方法用于高级气冷反应堆石墨砖的裂纹检测与识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the life-limiting components of an Advanced Gas cooled Reactor (AGR) is its graphite core. The bricks present in the core undergo radiolytic oxidation throughout their lifetime which causes graphite weight loss and irradiation which can result in some of the bricks developing cracks. Understanding the nature and extent of brick cracking within the core is key to ensuring continued and extended operation of the AGR fleet. A semi-supervised machine learning classification algorithm is proposed as a method for improving the detection of cracked graphite bricks, by combining the labels derived from infrequent, detailed inspections of the core, with unlabeled, more frequent monitoring measurements taken during refueling operations. Semi-supervised machine learning, which is an emerging field in nuclear power condition monitoring, is the combination of ideas from both supervised and unsupervised machine learning whereby the data that is used to train the algorithm is a combination of labeled and unlabeled data. This paper introduces the initial research that has been undertaken in creating a semi-supervised self-training algorithm to detect the presence of graphite brick cracks and then proceeds to show that there is an improvement in the classification of graphite bricks using a semi-supervised machine learning classifier compared to supervised machine learning classifiers. This improved classification performance is encouraging as it does not require time consuming and costly human analysis to obtain extra learning information from available data.
机译:先进气冷堆(AGR)的限制寿命的组件之一是其石墨芯。存在于芯中的砖在其整个生命周期中都会发生辐射氧化,这会导致石墨失重和辐射,从而导致某些砖出现裂纹。了解岩心中砖裂的性质和程度是确保AGR车队持续和扩展运营的关键。提出了一种半监督的机器学习分类算法,该方法通过结合对核心进行的不频繁,详细的检查得出的标签以及在加油过程中进行的无标签,更频繁的监视测量结果,来改进对破裂的石墨砖的检测的方法。半监督机器学习是核电状态监测中的一个新兴领域,它是有监督和无监督机器学习思想的结合,其中用于训练算法的数据是标记数据和未标记数据的组合。本文介绍了创建半监督自训练算法以检测石墨砖裂缝是否存在的初步研究,然后继续表明使用半监督机器对石墨砖的分类有所改进与有监督的机器学习分类器相比,学习分类器。这种改进的分类性能令人鼓舞,因为它不需要耗时且昂贵的人工分析来从可用数据中获取额外的学习信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号