首页> 外文OA文献 >Diagnosis of series DC arc faults - a machine learning approach
【2h】

Diagnosis of series DC arc faults - a machine learning approach

机译:直流电弧故障的诊断-一种机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Increasing prevalence of DC sources and loads has resulted in DC distribution being re-considered at a micro-grid level. However, in comparison to AC systems, the lack of a natural zero crossing has traditionally meant that protecting DC systems is inherently more difficult – this protection issue is compounded when attempting to diagnose and isolate fault conditions. One such condition is the series arc fault, which poses significant protection issues as their presence negates the logic of overcurrent protection philosophies. This paper proposes the IntelArc system to accurately diagnose series arc faults in DC systems. IntelArc combines time-frequency and time domain extracted features with hidden Markov models to discriminate between nominal transient behavior and arc fault behavior across a variety of operating conditions. Preliminary testing of the system is outlined with results showing that the system has the potential for accurate, generalized, diagnosis of series arc faults in DC systems.
机译:直流电源和负载的普及率越来越高,导致在微电网级别重新考虑了直流配电。但是,与交流系统相比,传统上缺乏自然的过零意味着保护直流系统本质上更加困难-在尝试诊断和隔离故障情况时,这种保护问题变得更加复杂。一种这样的情况是串联电弧故障,由于它们的出现会否定过电流保护原理的逻辑,因此会引起严重的保护问题。本文提出了一种IntelArc系统,可以准确地诊断直流系统中的串联电弧故障。 IntelArc将时频和时域提取的功能与隐马尔可夫模型相结合,可在各种工作条件下区分名义瞬变行为和电弧故障行为。概述了系统的初步测试,结果表明,该系统具有对直流系统中的串联电弧故障进行准确,全面,诊断的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号