首页> 外文OA文献 >Novel folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing
【2h】

Novel folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing

机译:新型折叠式PCA,可通过遥感中的高光谱成像和SAR改善特征提取和数据缩减

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As a widely used approach for feature extraction and data reduction, Principal Components Analysis (PCA) suffers from high computational cost, large memory requirement and low efficacy in dealing with large dimensional datasets such as Hyperspectral Imaging (HSI). Consequently, a novel Folded-PCA is proposed, where the spectral vector is folded into a matrix to allow the covariance matrix to be determined more efficiently. With this matrix-based representation, both global and local structures are extracted to provide additional information for data classification. Moreover, both the computational cost and the memory requirement have been significantly reduced. Using Support Vector Machine (SVM) for classification on two well-known HSI datasets and one Synthetic Aperture Radar (SAR) dataset in remote sensing, quantitative results are generated for objective evaluations. Comprehensive results have indicated that the proposed Folded-PCA approach not only outperforms the conventional PCA but also the baseline approach where the whole feature sets are used.
机译:作为一种广泛使用的特征提取和数据缩减方法,主成分分析(PCA)的计算成本高,内存需求大,处理诸如高光谱成像(HSI)等大型数据集的效率低。因此,提出了一种新颖的Folded-PCA,其中将频谱矢量折叠到一个矩阵中,以便更有效地确定协方差矩阵。使用这种基于矩阵的表示形式,可以提取全局和局部结构以提供用于数据分类的其他信息。此外,显着降低了计算成本和存储需求。使用支持向量机(SVM)对遥感中的两个著名的HSI数据集和一个合成孔径雷达(SAR)数据集进行分类,可以生成定量结果以进行客观评估。综合结果表明,建议的Folded-PCA方法不仅优于常规PCA,而且还优于使用整个功能集的基准方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号