首页> 外文OA文献 >Non-Keplerian orbits using hybrid solar sail propulsion for Earth applications
【2h】

Non-Keplerian orbits using hybrid solar sail propulsion for Earth applications

机译:非混合动力太阳帆推进系统在地球上的应用

摘要

Half a century of space technology development has provided a wealth of new space applications. However, many still remain to be explored. Examples include increased geostationary coverage and new opportunities to enhance polar observation. This thesis investigates both of these opportunities using families of non-Keplerian orbits, while demonstrating the potential of hybridised solar sail and solar electric propulsion (SEP) to enable these orbits. Due to an increased number of geostationary spacecraft and limits imposed by east-west spacing requirements, GEO is starting to get congested. As a solution, this thesis creates new geostationary slots by displacing the geostationary orbit out of the equatorial plane by means of low-thrust propulsion. A full mission analysis and systems design is presented as well as an investigation of a range of transfers that can improve the performance of the displaced GEO and establish its accessibility. The analyses demonstrate that only hybrid propulsion can enable payloads to be maintained in a true geostationary orbit beyond the geostationary station-keeping box for lifetimes comparable to current GEO spacecraft. The second opportunity, enhancing polar observations, is investigated by designing optimal transfers from low Earth orbit (LEO) to an Earth pole-sitter orbit that allows the spacecraft to hover above the polar regions. Both high-thrust (upper-stage) and low-thrust (spiral) transfers are considered and show that hybrid propulsion increases the mass delivered to the pole-sitter orbit compared to a pure SEP case, enabling an extension of the mission. In addition, transfers between north and south pole-sitter orbits are investigated to overcome limitations in observations during the polar winters. Again, hybrid propulsion reduces the propellant consumption compared to pure SEP, while increasing the polar observation time. Overall, hybrid propulsion is proven an enabling propulsion method that can enable missions that are not feasible using only a solar sail and can extend the mission lifetime and/or payload capacity with respect to an SEP only mission.
机译:半个世纪以来,空间技术的发展提供了许多新的太空应用。但是,仍有许多地方有待探索。例如,增加对地静止轨道的覆盖范围和增加极地观测的新机会。本文利用非基普勒斯轨道族研究了这两种机会,同时证明了混合太阳帆和太阳电推进(SEP)的潜力,使这些轨道成为可能。由于对地静止宇宙飞船数量的增加以及东西向间隔要求的限制,GEO开始变得拥挤。作为解决方案,本论文通过利用低推力推进将对地静止轨道移出赤道平面来创建新的对地静止槽。介绍了完整的任务分析和系统设计,以及对一系列调动的调查,这些调动可以改善流离失所的GEO的性能并确定其可及性。分析表明,只有混合动力推进技术才能使有效载荷保持在对地静止站保持箱之外的真实对地静止轨道上,使用寿命可与当前的GEO航天器相媲美。通过设计从低地球轨道(LEO)到地球极地定轨道的最佳转移,可以研究第二个机会,即加强极地观测,该转移可使航天器悬停在极地上方。高推力(上级)和低推力(螺旋型)传递都得到了考虑,并且表明与纯SEP情况相比,混合动力推进增加了送入极座轨道的质量,从而使任务得以扩展。此外,为了克服极地冬季观测的局限性,对南北极和南北极的轨道之间的转移进行了研究。同样,与纯SEP相比,混合动力推进减少了推进剂消耗,同时增加了极地观测时间。总体而言,混合动力推进已被证明是一种可行的推进方法,该方法可以仅使用太阳帆实现不可行的任务,并且相对于仅SEP任务,可以延长任务寿命和/或有效载荷能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号