首页> 外文OA文献 >A novel semisupervised support vector machine classifier based on active learning and context information
【2h】

A novel semisupervised support vector machine classifier based on active learning and context information

机译:基于主动学习和上下文信息的新型半监督支持向量机分类器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a novel semisupervised support vector machine classifier (Formula presented.) based on active learning (AL) and context information to solve the problem where the number of labeled samples is insufficient. Firstly, a new semisupervised learning method is designed using AL to select unlabeled samples as the semilabled samples, then the context information is exploited to further expand the selected samples and relabel them, along with the labeled samples train (Formula presented.) classifier. Next, a new query function is designed to enhance the reliability of the classification results by using the Euclidean distance between the samples. Finally, in order to enhance the robustness of the proposed algorithm, a fusion method is designed. Several experiments on change detection are performed by considering some real remote sensing images. The results show that the proposed algorithm in comparison with other algorithms can significantly improve the detection accuracy and achieve a fast convergence in addition to verify the effectiveness of the fusion method developed in this paper.
机译:本文提出了一种基于主动学习(AL)和上下文信息的新型半监督支持向量机分类器,以解决标记样本数量不足的问题。首先,设计了一种新的半监督学习方法,该方法使用AL选择未标记的样本作为半标签样本,然后利用上下文信息进一步扩展所选样本并重新标记它们,以及标记样本序列(表示公式)分类器。接下来,设计了一个新的查询功能,以通过使用样本之间的欧式距离来提高分类结果的可靠性。最后,为了提高算法的鲁棒性,设计了一种融合方法。通过考虑一些真实的遥感图像,进行了一些有关变化检测的实验。结果表明,与其他算法相比,本文提出的算法可以显着提高检测精度,并实现快速收敛,同时验证了本文开发的融合方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号