首页> 外文OA文献 >Prediction of forming limit diagram for AA5754 using artificial neural network modelling
【2h】

Prediction of forming limit diagram for AA5754 using artificial neural network modelling

机译:基于人工神经网络建模的AA5754极限成形图预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Warm stamping techniques have been employed to solve the formability problem in forming aluminium alloy panels. The formability of sheet metal is a crucial measure of its ability for forming complex-shaped panel components and is often evaluated by forming limit diagram (FLD). Although the forming limit is a simple tool to predict the formability of material, determining FLD experimentally at warm/hot forming condition is quite difficult. This paper presents the artificial neural network (ANN) modelling of the process based on experimental results (different temperature, 20°C-300°C and different forming rates, 5-300 mm.s-1) is introduced to predict FLDs. It is shown that the ANN can predict the FLDs at extreme conditions, which are out of the defined boundaries for training the ANN. According to comparisons, there is a good agreement between experimental and neural network results
机译:已经采用热冲压技术来解决形成铝合金板时的可成形性问题。钣金的可成形性是其形成复杂形状的面板组件的能力的关键指标,通常通过形成极限图(FLD)进行评估。尽管成形极限是预测材料成形性的简单工具,但在热/热成形条件下通过实验确定FLD还是很困难的。本文介绍了基于实验结果(不同温度20°C-300°C和不同成型速率5-300 mm.s-1)的过程的人工神经网络(ANN)建模,以预测FLD。结果表明,人工神经网络可以预测极端条件下的FLD,这些条件超出了训练神经网络所定义的边界。根据比较,实验结果和神经网络结果之间有很好的一致性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号