首页> 外文OA文献 >Pareto-optimality solution recommendation using a multi-objective artificial wolf-pack algorithm
【2h】

Pareto-optimality solution recommendation using a multi-objective artificial wolf-pack algorithm

机译:使用多目标人工狼群算法的帕累托最优解推荐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In practical applications, multi-objective optimisation is one of the most challenging problems that engineers face. For this, Pareto-optimality is the most widely adopted concept, which is a set of optimal trade-offs between conflicting objectives without committing to a recommendation for decision-making. In this paper, a fast approach to Pareto-optimal solution recommendation is developed. It recommends an optimal ranking for decision-makers using a Pareto reliability index. Further, a mean average precision and a mean standard deviation are utilised to gauge the trend of the evolutionary process. A multi-objective artificial wolf-pack algorithm is thus developed to handle the multi-objective problem using a non-dominated sorting method (MAWNS). This is tested in a case study, where the MAWNS is employed as an optimiser for a widely adopted standard test problem, ZDT6. The results show that the proposed method works valuably for the multi-objective optimisations.
机译:在实际应用中,多目标优化是工程师面临的最具挑战性的问题之一。为此,帕累托最优是最广泛采用的概念,它是冲突目标之间的一组最佳权衡,而无需提交决策建议。本文提出了一种快速的帕累托最优解推荐方法。它建议使用帕累托可靠性指标的决策者最佳排名。此外,平均平均精度和平均标准偏差用于衡量进化过程的趋势。因此,开发了一种多目标人工狼群算法,以使用非支配排序方法(MAWNS)处理多目标问题。在案例研究中对此进行了测试,其中将MAWNS用作针对广泛采用的标准测试问题ZDT6的优化器。结果表明,该方法对于多目标优化具有很好的实用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号