首页> 外文OA文献 >Data-driven analysis of ultrasonic pressure tube inspection data
【2h】

Data-driven analysis of ultrasonic pressure tube inspection data

机译:超声波压力管检查数据的数据驱动分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pressure tubes are critical components of the CANDU reactors and other pressurized heavy water type reactors, as they contain the nuclear fuel and the coolant. Manufacturing flaws, as well as defects developed during the in-service operation, can lead to coolant leakage and can potentially damage the reactor. The current inspection process of these flaws is based on manually analyzing ultrasonic data received from multiple probes during planned, statutory outages. Recent advances on ultrasonic inspection tools enable the provision of high resolution data of significantly large volumes. This is highlighting the need for an efficient autonomous signal analysis process. Typically, the automation of ultrasonic inspection data analysis is approached by knowledge-based or supervised data-driven methods. This work proposes an unsupervised data-driven framework that requires no explicit rules, nor individually labeled signals. The framework follows a two-stage clustering procedure that utilizes the DBSCAN density-based clustering algorithm and aims to provide decision support for the assessment of potential defects in a robust and consistent way. Nevertheless, verified defect dimensions are essential in order to assess the results and train the framework for unseen defects. Initial results of the implementation are presented and discussed, with the method showing promise as a means of assessing ultrasonic inspection data.
机译:压力管是CANDU反应堆和其他加压重水类型反应堆的关键组件,因为它们包含核燃料和冷却剂。制造缺陷以及在使用过程中产生的缺陷会导致冷却剂泄漏,并可能损坏反应堆。这些缺陷的当前检查过程是基于在计划的法定停机期间手动分析从多个探头接收到的超声数据。超声波检查工具的最新进展使得能够提供大量的高分辨率数据。这突出显示了对有效的自主信号分析过程的需求。通常,超声检查数据分析的自动化是通过基于知识或受监督的数据驱动方法来实现的。这项工作提出了一种无监督的数据驱动框架,该框架不需要明确的规则,也不需要单独标记的信号。该框架遵循两阶段的聚类过程,该过程利用基于DBSCAN密度的聚类算法,旨在以健壮和一致的方式为潜在缺陷的评估提供决策支持。但是,经过验证的缺陷尺寸对于评估结果和训练看不见的缺陷的框架至关重要。介绍并讨论了实施的初步结果,该方法显示了希望,可作为评估超声检查数据的一种手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号