首页> 外文OA文献 >Event-driven dynamic job shop scheduling execution based on improved Genetic Algorithm and Ontology
【2h】

Event-driven dynamic job shop scheduling execution based on improved Genetic Algorithm and Ontology

机译:基于改进遗传算法和本体的事件驱动动态作业车间调度执行

摘要

This paper proposes an improved Genetic Algorithm (IGA}-combined with ontology module to sol'c dynamic job shop scheduling problem (DJSSP). The objective function of this scheduling problem is to minimize a weighted sum method of maximum complete time (makespan) and mean waiting time to periodically plan production. This scheduling method is applied to a flexible manufacturing system. A reschedule strategy is utilized to solve dynamic disturbances happened during manufacturing process. Experimental results show that schedule can be repaired efficiently and correctly without obviously affecting the scheduling.
机译:提出了一种改进的遗传算法(IGA},结合本体模块来求解动态作业车间调度问题(DJSSP),该调度问题的目标是使最大完成时间(makespan)的加权和方法最小化。该调度方法应用于柔性制造系统,并采用重新调度策略解决制造过程中发生的动态扰动,实验结果表明,该调度方法可以有效,正确地进行修复,而不会明显影响调度。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号