首页> 外文OA文献 >Improved Locally Linear Embedding based method for nonlinear system fault detection
【2h】

Improved Locally Linear Embedding based method for nonlinear system fault detection

机译:基于改进局部线性嵌入的非线性系统故障检测方法

摘要

In order to detect faults of nonlinear systems, an approach based on improved Locally Linear Embedding (LLE) was proposed. Firstly, the raw data was projected to lower dimensional space by LLE. In this step, tangent space distance was introduced to LLE and certain enhancement had also been made to intrinsic dimension estimation to make the approach more efficient and robust. Secondly, the inner class distance of data was calculated as an index of fault detection. To demonstrate the effectiveness of the improved LLE method, it is applied to Tennessee Eastman (TE) process and compared with kernel principle component analysis (KPCA) method. By simulation analysis, the false negative rate of the proposed approach achieves 4.498% in average, which is much better than 77.53% of KPCA, certifying the effectiveness of the approach to nonlinear fault detection.
机译:为了检测非线性系统的故障,提出了一种基于改进的局部线性嵌入(LLE)的方法。首先,原始数据通过LLE投影到较低维空间。在这一步骤中,将切线空间距离引入到LLE中,并且对固有维数估计也进行了某些增强,以使该方法更加有效和健壮。其次,计算数据的内层距离作为故障检测指标。为了证明改进的LLE方法的有效性,将其应用于田纳西伊士曼(TE)过程,并与内核主成分分析(KPCA)方法进行了比较。通过仿真分析,该方法的假阴性率平均达到4.498%,远胜过KPCA的77.53%,证明了该方法在非线性故障检测中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号