首页> 外文OA文献 >Rectilinear-motion space inversion-based detection approach for infrared dim air targets with variable velocities
【2h】

Rectilinear-motion space inversion-based detection approach for infrared dim air targets with variable velocities

机译:基于直线运动空间反转的可变速度红外弱光目标检测方法

摘要

Dim targets are extremely difficult to detect using methods based on single-frame detection. Radiation accumulation is one of the effective methods to improve signal-to-noise ratio (SNR). A detection approach based on radiation accumulation is proposed. First, a location space and a motion space are established. Radiation accumulation operation, controlled by vectors from the motion space, is applied to the original image space. Then, a new image space is acquired where some images have an improved SNR. Second, quasitargets in the new image space are obtained by constant false-alarm ratio judging, and location vectors and motion vectors of quasitargets are also acquired simultaneously. Third, the location vectors and motion vectors are mapped into the two spaces, respectively. Volume density function is defined in the motion space. Location extremum of the location space and volume density extremum of motion space will confirm the true target. Finally, actual location of the true target in the original image space is obtained by space inversion. The approach is also applicable to detect multiple dim targets. Experimental results show the effectiveness of the proposed approach and demonstrate the approach is superior to compared approaches on detection probability and false alarm probability. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE).
机译:使用基于单帧检测的方法很难检测到昏暗的目标。辐射累积是提高信噪比(SNR)的有效方法之一。提出了一种基于辐射累积的检测方法。首先,建立位置空间和运动空间。由来自运动空间的矢量控制的辐射累积操作被应用于原始图像空间。然后,获取新的图像空间,其中一些图像具有改善的SNR。其次,通过恒定的误报率判断获得新图像空间中的准目标,并同时获取准目标的位置矢量和运动矢量。第三,将位置矢量和运动矢量分别映射到两个空间中。在运动空间中定义了体积密度函数。位置空间的位置极值和运动空间的体积密度极值将确定真实目标。最后,通过空间反演获得真实目标在原始图像空间中的实际位置。该方法也适用于检测多个暗淡目标。实验结果证明了该方法的有效性,并证明了该方法在检测概率和虚警概率上均优于比较方法。 ©2016光电仪器工程师协会(SPIE)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号