首页> 外文OA文献 >A collaborative filtering recommendation algorithm based on biclustering
【2h】

A collaborative filtering recommendation algorithm based on biclustering

机译:基于双聚类的协同过滤推荐算法

摘要

Collaborative filtering has been widely used in many fields such as movie recommendation and e-commerce. However, there are still some problems such as data sparsity which restrict its further development. To address the data sparsity problem we proposed a novel collaborative filtering recommendation algorithm based on biclustering. Firstly, we use biclustering algorithm simultaneous clustering of the rows and columns of the rating matrix to generate biclusters, then the missing data can be smoothed by using the information of the biclusters. Secondly, a weighted matrix is introduced to distinguish between the original data and the smoothing data. Lastly, the active user's neighbors can be found based on the new similarity we proposed, and the recommendation to the active user is produced. The experiment results are offered, which show that the algorithm we presented can alleviate the data sparsity problem and improve the quality of the recommendation.
机译:协作过滤已广泛用于电影推荐和电子商务等许多领域。但是,仍然存在一些问题,例如数据稀疏性限制了它的进一步发展。为了解决数据稀疏性问题,我们提出了一种基于双聚类的新型协同过滤推荐算法。首先,我们使用双聚类算法同时对评级矩阵的行和列进行聚类以生成双聚类,然后可以利用双聚类的信息对丢失的数据进行平滑处理。其次,引入加权矩阵以区分原始数据和平滑数据。最后,根据我们提出的新相似度,可以找到活跃用户的邻居,并产生对活跃用户的推荐。实验结果表明,本文提出的算法可以缓解数据稀疏性问题,提高推荐质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号