首页> 外文OA文献 >SSVEP-Based Brain-Computer Interface Controlled Functional Electrical Stimulation System for Upper Extremity Rehabilitation
【2h】

SSVEP-Based Brain-Computer Interface Controlled Functional Electrical Stimulation System for Upper Extremity Rehabilitation

机译:基于SSVEP的上肢康复脑机接口控制功能电刺激系统

摘要

Traditional rehabilitation techniques have limited effects on the recovery of patients with tetraplegia. A brain-computer interface (BCI) provides an interactive channel that does not depend on the normal output of peripheral nerves and muscles. In this paper, an integrated framework of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) is established, which can potentially enable the upper limbs to achieve more effective motor rehabilitation. The EEG signals based on steady-state visual evoked potential are used in the BCI. Their frequency domain characteristics identified by the pattern recognition method are utilized to recognize intentions of five subjects with average accuracy of 73.9%. Furthermore the movement intentions are transformed into instructions to trigger FES, which is controlled with iterative learning control method, to stimulate the relevant muscles of upper limbs tracking desired velocity and position. It is a useful technology with potential to restore, reinforce or replace lost motor function of patients with neurological injuries. Experiments with five healthy subjects demonstrate the feasibility of BCI integrated with upper extremity FES toward improved function restoration for an individual with upper limb disabilities, especially for patients with tetraplegia.
机译:传统的康复技术对四肢瘫痪患者的康复影响有限。脑机接口(BCI)提供了一个交互式通道,该通道不依赖于周围神经和肌肉的正常输出。在本文中,建立了基于非侵入性脑电图(EEG)的BCI与非侵入性功能性电刺激(FES)的集成框架,这有可能使上肢实现更有效的运动康复。在BCI中使用基于稳态视觉诱发电位的EEG信号。通过模式识别方法识别的频域特征被用于识别五个对象的意图,平均准确度为73.9%。此外,将运动意图转换为指令,以触发FES(由迭代学习控制方法控制),以刺激上肢的相关肌肉跟踪所需的速度和位置。这是一种有用的技术,具有恢复,加强或替代神经损伤患者运动功能丧失的潜力。对五名健康受试者的实验表明,将BCI与上肢FES集成在一起,对于上肢残疾的患者,尤其是四肢瘫痪患者,可以改善其功能恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号