首页> 外文OA文献 >A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment
【2h】

A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment

机译:基于分离神经网络控制的闭环环境的生物与机械智能集成的新型机器人系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.
机译:我们提出了一种基于连接到外部代理的神经控制器的,融合了生物和人工智能的新型机器人系统的体系结构。我们最初建立了一个框架,该框架将分离的神经网络连接到移动机器人系统,以实现逼真的车辆。设计了具有摄像头和两轮机器人的移动机器人系统来执行目标搜索任务。我们修改了软件体系结构,并开发了一种自制的刺激生成器,可通过简单的二项式编码/解码方案在生物和人工成分之间建立双向连接。在本文中,我们首次将特定的分层分离神经网络用作神经控制器。根据我们的工作,神经文化已成功地用于控制人工制剂,从而实现了高性能。令人惊讶的是,在破伤风刺激训练下,由于神经网络的短期可塑性(一种强化学习),随着训练周期的增加,机器人的性能越来越好。与先前报道的工作相比,我们采用了有效的实验建议(即,增加了训练周期)来确保短期可塑性的发生,并初步证明了机器人性能的提高可能独立于可塑性引起分离神经网络的发展。这个新的框架可以通过神经网络的可塑性处理的工程应用,为智能机器人的学习能力提供一些可能的解决方案,也可以为基于双向交换的下一代神经假体的理论启发发展提供一些可能的解决方案。层次神经网络中的信息集合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号