首页> 外文OA文献 >Vision-based robot path planning with deep learning
【2h】

Vision-based robot path planning with deep learning

机译:具有深度学习的基于视觉的机器人路径规划

摘要

In this paper, a new method based on deep convolutional neural network (CNN) for path planning of robot is proposed, the aim of which is to transform the mission of path planning into a task of environment classification. Firstly, the images of road are collected from cameras installed as required, and then the comprehensive features are abstracted directly from original images through the CNN. Finally, according to the results of classification, the moving direction of robots is exported. In this way, we build an end-to-end recognition system which maps from raw data to motion behavior of robot. Furthermore, experiment has been provided to demonstrate the performance of the proposed method on different roads.
机译:本文提出了一种基于深度卷积神经网络(CNN)的机器人路径规划新方法,其目的是将路径规划的任务转化为环境分类的任务。首先,从需要安装的摄像机中收集道路图像,然后通过CNN直接从原始图像中提取全面功能。最后,根据分类结果,导出机器人的运动方向。这样,我们构建了一个从原始数据到机器人运动行为的映射的端到端识别系统。此外,提供了实验来证明所提出的方法在不同道路上的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号