首页> 外文OA文献 >Geometric versus Model Predictive Control based guidance algorithms for fixed-wing UAVs in the presence of very strong wind fields.
【2h】

Geometric versus Model Predictive Control based guidance algorithms for fixed-wing UAVs in the presence of very strong wind fields.

机译:存在强风场的固定翼无人机的基于几何预测与模型预测控制的制导算法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs).udIn order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed.udIn this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed.udThe proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path.udAs an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn.udEvaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach.
机译:近年来,小型自主固定翼无人飞行器(UAV)的发展得到了发展。 ud为了释放这些平台的广泛应用性,它们需要能够在各种环境条件下运行。由于它们的体积小,重量轻,速度低,因此它们需要能够应对接近甚至比标称空速更快的风速。 ud本文提出了一种非线性几何制导策略,以解决该问题。更广泛地说,提出了一种方法,用于在可能超过最大车速的强流场(例如风,水下流)存在的情况下,对非完整单轮车类车辆进行高层控制。 ud作为一种替代方法,开发了一种基于模型预测控制(MPC)的算法,并比较了模型的优缺点。 ud在大风条件下进行的仿真评估和具有挑战性的实际飞行实验证实了所提出的制导方法的可行性。

著录项

  • 作者

    Furieri Luca;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号