首页> 外文OA文献 >Investigating the influence of surface meltwater on the ice dynamics of the Greenland Ice Sheet
【2h】

Investigating the influence of surface meltwater on the ice dynamics of the Greenland Ice Sheet

机译:研究地表融水对格陵兰冰原冰动力的影响

摘要

This thesis explains the annual ice velocity cycle of the Sermeq (Glacier) Avannarleq flowline, in West Greenland, using a longitudinally coupled 2D (vertical cross-section) ice flow model coupled to a 1D (depth-integrated) hydrology model via a novel basal sliding rule. Within a reasonable parameter space, the coupled model produces mean annual solutions of both the ice geometry and velocity that are validated by both in situ and remotely sensed observations. The modeled annual velocity cycle reproduces the broad features of the annual basal sliding cycle observed along this flowline, namely a summer speedup event followed by a fall slowdown. The summer speedup event corresponds to conditions of increasing hydraulic head during inefficient subglacial drainage, while the fall slowdown event corresponds to conditions of decreasing hydraulic head during efficient subglacial drainage. Calculated coupling stresses diminish to less than 10 % of total driving stress within 6 km upstream of the Sermeq Avannarleq terminus. This suggests that the annual ice velocity cycle observed at CU/ETH (u22Swissu22) Camp (46 km upstream) is unlikely to be the result of velocity perturbations being propagated upstream via longitudinal coupling, but instead reflects local surface meltwater induced ice acceleration. This thesis also compares high-resolution 1985 and 2009 imagery of the Sermeq Avannarleq ablation zone to assess changes in crevasse extent and supraglacial hydrology. The area occupied by crevasses u3e 2 m wide significantly increased (13 ± 4 %) over the 24-year period. This increase consists of an expansion of existing crevasse fields, and is accompanied by widespread changes in crevasse orientation (up to 45°). The increase in crevasse extent is likely due to a combination of ice sheet thinning and changes in flow direction, both stemming from the recent acceleration of nearby Jakobshavn Isbrae. A first-order demonstration that moulin-type drainage is more efficient than crevasse-type drainage in transferring meltwater fluctuations to the subglacial system suggests that this transition may dampen the basal sliding sensitivity of portions of the ice sheet that are not presently crevassed. An increase in crevasse extent may also enhance mass loss through increased surface ablation and increased deformational ice velocities due to facilitated cryo-hydrologic warming.
机译:本论文使用纵向耦合的二维(垂直横截面)冰流模型和一维(深度综合)水文模型,通过新颖的基础,解释了西格陵兰Sermeq(冰川)Avannarleq流线的年冰速度周期滑动规则。在合理的参数空间内,耦合模型产生了冰几何形状和速度的年均解,并通过现场观测和遥感观测进行了验证。建模的年速度周期再现了沿该流线观察到的年基滑移周期的广泛特征,即夏季加速事件然后是秋季减速。夏季加速事件对应于在低效率的冰川下排水过程中水力压头增大的情况,而下降减速事件对应于在有效的冰面下排水过程中水力压头减小的条件。在Sermeq Avannarleq总站上游6公里之内,计算出的耦合应力减小到总驱动应力的不到10%。这表明在CU / ETH(上游46 km)营地观测到的年度冰速周期不太可能是速度扰动通过纵向耦合在上游传播的结果,而是反映了局部地表融水引起的冰加速度。 。本文还比较了Sermeq Avannarleq消融区的1985年和2009年高分辨率图像,以评估裂隙程度和沿冰川水文学的变化。在24年中,2 m宽的裂缝所占面积显着增加(13±4%)。这种增加包括现有裂隙区域的扩大,并伴随裂隙定向的广泛变化(最大45°)。裂隙程度的增加很可能是由于冰盖变薄和流向变化的综合作用,两者均来自附近雅各布沙文·伊斯布雷(Jakobshavn Isbrae)最近的加速。一阶论证表明,红磨坊型排水比裂隙型排水更有效地将融化水波动转移到冰川下系统,表明这种转变可能会抑制目前尚未破裂的冰盖部分的基础滑动敏感性。裂隙程度的增加还可以通过增加的表面消融和由于促进的低温水文变暖而增加的变形冰速度来增加质量损失。

著录项

  • 作者

    Colgan William T.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号