首页> 外文OA文献 >A Review of Mathematical Techniques in Machine Learning
【2h】

A Review of Mathematical Techniques in Machine Learning

机译:机器学习中的数学技术述评

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As machine learning has developed, its methodologies have become increasingly mathematically sophisticated. For example, sampling and variational methods that were originally developed for application to mathematically diffcult problems in statistical mechanics are now commonplace in machine learning. Similarly, machine learning has co-opted many ideas from statistics, such as nonparametric Bayesian methods like Gaussian processes, Dirichlet processes, and completely random measures. In addition, graphical models and their associated inference techniques have emerged as a very important tool in a wide variety contexts. There are also interesting ideas that originated in machine learning rather than coming from other fields, ideas such as the kernelization of linear algorithms, and ideas in reinforcement and hierarchical reinforcement learning. This thesis reviews machine learning techniques of the types mentioned above that are of particular mathematical interest.
机译:随着机器学习的发展,其方法在数学上也变得越来越复杂。例如,最初用于统计力学中的数学难点问题的采样和变异方法现在在机器学习中很普遍。同样,机器学习也从统计学中选择了许多想法,例如非参数贝叶斯方法(如高斯过程,狄利克雷过程和完全随机的度量)。此外,图形模型及其相关的推理技术已成为各种各样环境中的一个非常重要的工具。还有一些有趣的想法,它们起源于机器学习,而不是来自其他领域,例如线性算法的内核化以及增强和分层增强学习中的想法。本文回顾了上面提到的具有特殊数学意义的机器学习技术。

著录项

  • 作者

    Lewis Owen Ardron;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号