首页> 外文OA文献 >Characterization of Positive Matrix Factorization Methods and Their Application to Ambient Aerosol Mass Spectra
【2h】

Characterization of Positive Matrix Factorization Methods and Their Application to Ambient Aerosol Mass Spectra

机译:正矩阵分解方法的表征及其在环境气溶胶质谱中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Atmospheric aerosol has impacts on health, visibility, ecosystems, and climate. The organic component of submicron aerosol is a complex mixture of tens of thousands of compounds, and it is still challenging to quantify the direct sources of organic aerosol. Organic aerosol can also form from a variety of secondary reactions in the atmosphere, which are poorly understood. Real-time instrumental techniques, including the Aerosol Mass Spectrometer (AMS), which can quantitatively measure aerosol composition with high time and size resolution, and some chemical resolution, produce large volumes of data that contain rich information about aerosol sources and processes. This thesis work seeks to extract the underlying information that describes organic aerosol sources and processes by applying factor analytical techniques to organic aerosol datasets from the AMS. We have developed a custom, open-source software tool to compare factorization solutions, their residuals, and tracer-factor correlations. The application of existing mathematical techniques to these new datasets requires careful characterization of the precision in the data and the factorization modelsu27 behavior with these specialized datasets. We explore this behavior with synthetic datasets modeled on AMS data. The synthetic data factorization has predictable behaviors when solved with u22too manyu22 factors. These behaviors then guide the choice of solution for real aerosol datasets. The factor analyses of real aerosol datasets are useful for identifying aerosol types related to sources (e.g., urban combustion and biomass burning) and secondary atmospheric processes (e.g., semivolatile and low-volatility oxidized organic aerosol). We have also factored three-dimensional datasets of size-resolved aerosol composition data to explore the variability of aerosol size distributions as the aerosol undergoes processing in an urban atmosphere. This study provides evidence that primary particles are coated with condensed secondary aerosol during photochemical processing, shifting the size distribution of the primary particles to larger sizes. Application of these three-dimensional factorization techniques to other complex aerosol composition datasets (e.g., that use thermal desorption or chromatography for further chemical separation) has the potential to yield additional insights about aerosol sources and processes.
机译:大气气溶胶会对健康,能见度,生态系统和气候产生影响。亚微米气雾剂的有机成分是数以万计的化合物的复杂混合物,而对有机气雾剂的直接来源进行量化仍是一项挑战。有机气溶胶也可能是由大气中的各种次级反应形成的,人们对此知之甚少。实时仪器技术(包括气溶胶质谱仪(AMS))可以以高时间分辨率和尺寸分辨率以及某些化学分辨率定量测量气溶胶成分,从而产生大量数据,其中包含有关气溶胶来源和过程的丰富信息。本论文旨在通过将因子分析技术应用于AMS中的有机气溶胶数据集,来提取描述有机气溶胶来源和过程的基础信息。我们已经开发了一个定制的开源软件工具,用于比较分解解决方案,它们的残差和示踪因子之间的相关性。将现有数学技术应用于这些新数据集需要仔细表征数据的精度以及这些专用数据集的因式分解模型的行为。我们使用在AMS数据上建模的综合数据集来探索这种行为。当使用太多因素求解时,综合数据分解具有可预测的行为。这些行为将指导实际气溶胶数据集的解决方案选择。真实气溶胶数据集的因子分析可用于识别与来源(例如城市燃烧和生物质燃烧)和二次大气过程(例如半挥发性和低挥发性氧化有机气溶胶)有关的气溶胶类型。我们还对尺寸分辨的气溶胶成分数据的三维数据集进行了因子分析,以探索在城市大气中进行气溶胶处理时气溶胶尺寸分布的可变性。这项研究提供的证据表明,在光化学处理过程中,初级粒子被冷凝的次级气溶胶覆盖,从而将初级粒子的尺寸分布转移到更大的尺寸。将这些三维分解技术应用于其他复杂的气溶胶成分数据集(例如,使用热脱附或色谱法进行进一步的化学分离)可能会产生有关气溶胶来源和工艺的更多见解。

著录项

  • 作者

    Ulbrich Ingrid Marie;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号