首页> 外文OA文献 >Many Objective Analysis to Optimize Pumping and Releases in a Multi-Reservoir Water Supply Network
【2h】

Many Objective Analysis to Optimize Pumping and Releases in a Multi-Reservoir Water Supply Network

机译:多目标分析以优化多水库供水网络中的抽水和排放

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Past research has proven the utility of using multiobjective evolutionary algorithms (MOEAs) to optimize complex water management problems with many conflicting performance objectives. This study expands on the multiobjective optimization methodology by embedding a sophisticated RiverWare model in the algorithm search loop. The main challenges beyond linking the algorithm and model were due to the modelu27s long simulation time and the complexity of the model. Addressing the simulation time necessitated several creative approaches to ensure efficient but thorough algorithm search and intelligent representation of hydrologic variability. Successfully addressing these issues confirms that advanced detailed operations models for civil infrastructure and water management can be used in MOEA-based multiobjective optimization.The complexity of the Tarrant Regional Water District (TRWD) model offered additional challenges through which this study was able to gain further insight into the MOEA-assisted multiobjective optimization methodology. Initial objectives focused on system-wide reduction in pumping. Through the failure of the initial objectives to account for the performance of individual reservoirs, this study recognized that conflicts exist between objectives not only at a sub-system scale but also between system components and the broader system-wide objectives. Additionally, the incorporation of this information into a second problem formulation, which provided further system insights, confirmed that iterative problem definition is crucial to the decision making process.The results obtained with this complex model suggest the need for further refinement of problem formulation, but also provided valuable information to TRWD. The implications of climate forecasting and initial conditions within their model have a significant impact on the performance of suggested management alternatives, and may contribute to ambiguity in the relationships between the decisions made to balance and supplement reservoirs and the performance outcomes. This knowledge may inform TRWDu27s approach to optimization and decision making in the future and proves the value of the intermediate outcomes in multiobjective optimization.
机译:过去的研究证明,使用多目标进化算法(MOEA)可以优化具有许多相互矛盾的性能目标的复杂水管理问题。通过在算法搜索循环中嵌入复杂的RiverWare模型,本研究扩展了多目标优化方法。除了将算法和模型链接在一起之外,主要挑战还在于模型的仿真时间长以及模型的复杂性。解决模拟时间需要采取多种创新方法,以确保有效但全面的算法搜索和水文变异性的智能表示。成功解决这些问题证实了可以在基于MOEA的多目标优化中使用民用基础设施和水资源管理的高级详细操作模型。塔兰特地区水区(TRWD)模型的复杂性为这项研究提供了更多的挑战,从而可以进一步获得研究成果深入了解MOEA辅助的多目标优化方法。最初的目标集中在系统范围内减少泵送方面。由于未能通过初始目标来解释各个储层的性能,这项研究认识到,目标之间不仅存在于子系统规模,而且还存在于系统组成部分与更广泛的系统范围目标之间的冲突。此外,将此信息合并到第二个问题表述中,这提供了进一步的系统见解,证实了迭代问题定义对于决策过程至关重要。使用此复杂模型获得的结果表明需要进一步完善问题表述,但是还为TRWD提供了有价值的信息。气候预测和模型中初始条件的含义对建议的管理替代方案的绩效产生重大影响,并且可能会导致平衡和补充水库的决策与绩效结果之间的关系含糊不清。这些知识可能会为TRWD将来的优化和决策方法提供信息,并证明中间结果在多目标优化中的价值。

著录项

  • 作者

    Smith Rebecca;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号