首页> 外文OA文献 >Application of Artificial Neural Network (ANN) in $SF_6$ breakdown studies in nonuniform field gaps
【2h】

Application of Artificial Neural Network (ANN) in $SF_6$ breakdown studies in nonuniform field gaps

机译:人工神经网络(ANN)在非均匀场间隙的$ SF_6 $分解研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In $SF_6$-filled electrical equipment, the electric field distribution is kept rather uniform. However in practice, the electric field in the gas gap is distorted by nonuniformities. For this reason, the inhomogeneous field breakdown in $SF_6$ has been extensively studied by various researchers and the breakdown characteristics of compressed $SF_6$ have been reported. Obtaining experimental data under all conditions is not possible. Therefore, an attempt has been made in the present work to apply an artificial neural network (ANN) to obtain such data. The projection pursuit learning network (PPLN) has been used as the ANN model. Breakdown data for four different voltage waveforms were used to train the network for $SF_6$ pressures of 1-5 bar and rod diameters of 1-12 mm in a rod-plane geometry. The ANN was first trained with these data so as to obtain a smooth regression surface interpolating the training data. The regression surface thus obtained, was thereafter used to generate the breakdown and corona inception voltages with in the range of gas pressures and nonuniformities studied, where no data is available.
机译:在充满$ SF_6 $的电气设备中,电场分布保持相当均匀。然而,实际上,气隙中的电场由于不均匀而失真。因此,$ SF_6 $的非均匀场击穿已被许多研究者广泛研究,并且已报道了压缩的$ SF_6 $的击穿特性。无法在所有条件下获取实验数据。因此,在本工作中已经尝试应用人工神经网络(ANN)获得此类数据。投影追踪学习网络(PPLN)已被用作ANN模型。使用四种不同电压波形的击穿数据来训练网络,以获得杆平面几何形状的SF_6 $压力为1-5 bar,杆直径为1-12 mm。首先用这些数据对ANN进行训练,以获得内插训练数据的平滑回归曲面。然后,将如此获得的回归表面用于产生击穿电压和电晕起始电压,且所研究的气体压力和不均匀性均在所研究的气体压力和不均匀性范围内,而目前尚无数据。

著录项

  • 作者

    Chowdhury Sandeep; Naidu MS;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号