首页> 外文OA文献 >Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes
【2h】

Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes

机译:基于非参数熵的随机过程之间的独立性检验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article develops nonparametric tests of independence between two stochastic processes satisfying β-mixing conditions. The testing strategy boils down to gauging the closeness between the joint and the product of the marginal stationary densities. For that purpose, we take advantage of a generalized entropic measure so as to build a whole family of nonparametric tests of independence. We derive asymptotic normality and local power using the functional delta method for kernels. As a corollary, we also develop a class of entropy-based tests for serial independence. The latter are nuisance parameter free, and hence also qualify for dynamic misspecification analyses. We then investigate the finite-sample properties of our serial independence tests through Monte Carlo simulations. They perform quite well, entailing more power against some nonlinear AR alternatives than two popular nonparametric serial-independence tests.
机译:本文开发了满足β混合条件的两个随机过程之间的独立性的非参数检验。测试策略归结为衡量接缝与边际固定密度乘积之间的紧密度。为此,我们利用广义熵测度的优势,以建立整个非参数独立性检验的族。我们使用函数delta方法导出核的渐近正态性和局部幂。因此,我们还开发了一类基于熵的序列独立性测试。后者不受干扰参数的影响,因此也适合进行动态错误指定分析。然后,我们通过蒙特卡洛模拟研究串行独立性测试的有限样本属性。它们的性能相当好,与某些流行的非参数串行独立性测试相比,它们在针对某些非线性AR替代品方面具​​有更高的功耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号