首页> 外文OA文献 >Interactive multi-objective particle swarm optimization with heatmap-visualization-based user interface
【2h】

Interactive multi-objective particle swarm optimization with heatmap-visualization-based user interface

机译:基于热图可视化的用户界面交互式多目标粒子群优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article introduces an interactive Multi-Objective Particle Swarm Optimization (MOPSO) method that allows a human decision maker to guide the optimization process based on domain-specific knowledge and problem-specific preferences. This article also presents a novel graphical user interface based on heatmap visualization which, combined with the algorithm, greatly reduces the workload on the user, thereby decreasing unwanted side effects caused by human fatigue. The method was evaluated on a set of standard test problems and the results were compared to those of a non-interactive MOPSO method. To simulate domain-specific preferences and knowledge, the decision maker was instructed to focus the search on a specific region of the Pareto-front. The results demonstrate that the proposed method was able to obtain better solutions than the non-interactive MOPSO method in terms of convergence towards the true Pareto-front and the number and spread of focused solutions.
机译:本文介绍了一种交互式多目标粒子群优化(MOPSO)方法,该方法使人工决策者可以根据特定领域的知识和特定于问题的偏好来指导优化过程。本文还介绍了一种基于热图可视化的新颖图形用户界面,该界面与该算法相结合,大大减少了用户的工作量,从而减少了人为疲劳造成的不良副作用。该方法针对一组标准测试问题进行了评估,并将结果与​​非交互式MOPSO方法的结果进行了比较。为了模拟特定领域的偏好和知识,指示制定者被指示将搜索集中在Pareto-front的特定区域。结果表明,在向真正的帕累托前线收敛以及聚焦解的数量和分布方面,所提出的方法能够比非交互式MOPSO方法获得更好的解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号