首页> 外文OA文献 >Optimizing Testing Efficiency with Error-Prone Path Identification and Genetic Algorithms
【2h】

Optimizing Testing Efficiency with Error-Prone Path Identification and Genetic Algorithms

机译:利用错误路径识别和遗传算法优化测试效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a method for optimizing software testing efficiency by identifying the most error prone path clusters in a program. We do this by developing variable length genetic algorithms that optimize and select the software path clusters which are weighted with sources of error indexes. Although various methods have been applied to detecting and reducing errors in a whole system, there is little research into partitioning a system into smaller error prone domains for testing. Exhaustive software testing is rarely possible because it becomes intractable for even medium sized software. Typically only parts of a program can be tested, but these parts are not necessarily the most error prone. Therefore, we are developing a more selective approach to testing by focusing on those parts that are most likely to contain faults, so that the most error prone paths can be tested first. By identifying the most error prone paths, the testing efficiency can be increased.
机译:我们提出了一种通过识别程序中最容易出错的路径簇来优化软件测试效率的方法。我们通过开发可变长度遗传算法来做到这一点,该算法优化并选择了以错误索引为源的软件路径簇。尽管已采用各种方法来检测和减少整个系统中的错误,但很少有研究将系统划分为易于出错的较小域以进行测试。详尽的软件测试几乎是不可能的,因为即使对于中等大小的软件,它也变得难以处理。通常,只能测试程序的一部分,但是这些部分不一定是最容易出错的。因此,我们将重点放在那些最有可能包含故障的部分上,从而开发出一种更具选择性的测试方法,以便可以首先测试最容易出错的路径。通过确定最容易出错的路径,可以提高测试效率。

著录项

  • 作者

    Birt James; Sitte Renate;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号