首页> 外文OA文献 >Learning discriminative local patterns with unrestricted structure for face recognition
【2h】

Learning discriminative local patterns with unrestricted structure for face recognition

机译:学习具有不受限制的结构的区分性局部模式以进行人脸识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Local binary patterns are a popular local texture feature for describing textures and objects. The standard method and many derivatives use a hand- crafted structure of point comparisons to encode the local texture to build the descriptors. In this paper we propose automatically learning a discriminative pattern structure from an extended pool of candidate pattern elements, without restricting the possible configurations. The learnt pattern structure may contain elements describing many different scales and gradient orientations that are not available in LBP (and related patterns), thus allowing the flexibility to construct structures capable of better representing the objects under test. We show through experimentation on two face recognition databases that this approach consistently outperforms other methods, in terms of training speed and recognition accuracy in every tested case.
机译:局部二进制模式是一种流行的局部纹理功能,用于描述纹理和对象。标准方法和许多派生方法使用手工制作的点比较结构来编码局部纹理以构建描述符。在本文中,我们建议从候选模式元素的扩展池中自动学习判别模式结构,而不限制可能的配置。学习的图案结构可能包含描述许多不同比例和梯度方向的元素,而这些元素在LBP(以及相关的图案)中不可用,因此可以灵活地构造能够更好地表示被测对象的结构。我们通过在两个面部识别数据库上进行的实验表明,在每个测试案例中,该方法在训练速度和识别准确性方面始终优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号