首页> 外文OA文献 >Missing value imputation for gene expression data: computational techniques to recover missing data from available information
【2h】

Missing value imputation for gene expression data: computational techniques to recover missing data from available information

机译:基因表达数据的缺失值估算:从可用信息中恢复缺失数据的计算技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microarray gene expression data generally suffers from missing value problem due to a variety of experimental reasons. Since the missing data points can adversely affect downstream analysis, many algorithms have been proposed to impute missing values. In this survey, we provide a comprehensive review of existing missing value imputation algorithms, focusing on their underlying algorithmic techniques and how they utilize local or global information from within the data, or their use of domain knowledge during imputation. In addition, we describe how the imputation results can be validated and the different ways to assess the performance of different imputation algorithms, as well as a discussion on some possible future research directions. It is hoped that this review will give the readers a good understanding of the current development in this field and inspire them to come up with the next generation of imputation algorithms.
机译:由于各种实验原因,微阵列基因表达数据通常遭受缺失值问题。由于丢失的数据点可能会对下游分析产生不利影响,因此提出了许多算法来估算丢失的值。在本次调查中,我们对现有缺失值插补算法进行了全面回顾,重点介绍了其基础算法技术以及它们如何利用数据中的本地或全局信息,或在插补过程中如何使用领域知识。此外,我们还介绍了如何验证插补结果以及评估不同插补算法性能的不同方法,并讨论了一些可能的未来研究方向。希望本文能使读者对这一领域的最新发展有一个很好的了解,并激发他们提出下一代插补算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号