首页> 外文OA文献 >An Intelligent Approach to Handle False-Positive Radio Frequency Identification Anomalies
【2h】

An Intelligent Approach to Handle False-Positive Radio Frequency Identification Anomalies

机译:一种处理假阳性射频识别异常的智能方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Radio Frequency Identification (RFID) technology allows wireless interaction between tagged objects and readers to automatically identify large groups of items. This technology is widely accepted in a number of application domains, however, it suffers from data anomalies such as false-positive observations. Existing methods, such as manual tools, user specified rules and filtering algorithms, lack the automation and intelligence to effectively remove ambiguous false-positive readings. In this paper, we propose a methodology which incorporates a highly intelligent feature set definition utilised in conjunction with various state-of-the-art classifying techniques to correctly determine if a reading flagged as a potential false-positive anomaly should be discarded. Through experimental study we have shown that our approach cleans highly ambiguous false-positive observational data effectively. We have also discovered that the Non-Monotonic Reasoning classifier obtained the highest cleaning rate when handling false-positive RFID readings.
机译:射频识别(RFID)技术允许带标签的物体和阅读器之间进行无线交互,以自动识别大型物品。这项技术在许多应用领域中都被广泛接受,但是,它遭受数据异常(例如假阳性观察)的困扰。现有的方法,例如手动工具,用户指定的规则和过滤算法,缺乏自动和智能的功能,无法有效地消除模棱两可的假阳性读数。在本文中,我们提出了一种方法,该方法结合了高度智能的特征集定义,并结合了各种最新的分类技术,可以正确地确定是否应丢弃标记为潜在假阳性异常的读数。通过实验研究,我们证明了我们的方法可以有效地清除高度含糊的假阳性观测数据。我们还发现,非单调推理分类器在处理假阳性RFID读数时获得了最高的清除率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号