首页> 外文OA文献 >Robust speech recognition using features based on zero crossings with peak amplitudes
【2h】

Robust speech recognition using features based on zero crossings with peak amplitudes

机译:使用基于零振幅和峰值幅度的特征进行鲁棒的语音识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper presents an extensive study of zero crossings with peak amplitudes (ZCPA) features, that have earlier been shown to outperform both conventional and auditory-based features in the presence of additive noise. The study starts by optimizing different parameters involved in ZCPA feature computation, followed by a comparison of ZCPA and MFCC features on two recognition tasks in different background conditions. The main differences between the two feature types are identified, and their individual effects on ASR performance are evaluated. The importance of a proper choice of analysis frame lengths and filter bandwidths in ZCPA feature extraction is demonstrated. Furthermore, the use of dominant frequency information in ZCPA features is found to be a major reason for increased robustness of ZCPA features compared to MFCC features.
机译:本文对零振幅峰峰值(ZCPA)特征进行了广泛的研究,在存在加性噪声的情况下,该特征早已被证明优于传统特征和基于听觉的特征。该研究首先优化ZCPA特征计算中涉及的不同参数,然后在不同背景条件下对两个识别任务的ZCPA和MFCC特征进行比较。确定了两种功能类型之间的主要区别,并评估了它们对ASR性能的影响。说明了在ZCPA特征提取中正确选择分析帧长度和滤波器带宽的重要性。此外,发现与MFCC功能相比,在ZCPA功能中使用主导频率信息是ZCPA功能稳健性增强的主要原因。

著录项

  • 作者

    Gajic Bojana; Paliwal Kuldip;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号