首页> 外文OA文献 >Piece-Wise Linearity Based Method for Text Frame Classication in Video
【2h】

Piece-Wise Linearity Based Method for Text Frame Classication in Video

机译:基于分段线性度的视频文本帧分类方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of text frame classification technique is to label a video frame as text or non-text before text detection and recognition. It is an essential step prior to text detection because text detection methods assume the input to be a text frame. Consequently, when a non-text frame is subjected to text detection, the precision of the text detection method decreases because of false positives. In this paper a new text frame classification approach based on component linearity is proposed. The method firstly obtains probable text clusters from the gradient values of the RGB images of an input video frame. The Sobel edges corresponding to the text cluster are then extracted and used for further processing. Next, the method proposes to eliminate false text components before undertaking a linearity check where the linearity of the text components is determined using their centroids in a piece-wise manner. If the components in a frame satisfy the defined linearity condition, then the frame is considered as a text frame; otherwise it is considered as a non-text frame. The proposed method has been tested on standard text and non-text datasets of different orientations to demonstrate that it is independent of orientation. A comparative study with the existing method shows that the proposed method is superior in terms of classification rate and processing time.
机译:文本帧分类技术的目的是在检测和识别文本之前将视频帧标记为文本或非文本。这是文本检测之前必不可少的步骤,因为文本检测方法将输入假定为文本框架。因此,当对非文本帧进行文本检测时,由于误报,文本检测方法的精度降低。本文提出了一种新的基于组件线性度的文本框架分类方法。该方法首先从输入视频帧的RGB图像的梯度值获得可能的文本簇。然后提取与文本簇相对应的Sobel边缘,并将其用于进一步处理。接下来,该方法提出在进行线性检查之前消除错误的文本成分,其中,使用其质心以分段方式确定文本成分的线性。如果框架中的组件满足定义的线性条件,则将该框架视为文本框架;否则,将其视为文本框架。否则,将其视为非文本框架。该方法已经在不同方向的标准文本和非文本数据集上进行了测试,以证明该方法与方向无关。与现有方法的比较研究表明,该方法在分类率和处理时间方面都比较优越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号