This paper introduces a novel 2-stage classification system with stacking and genetic algorithm (GA) based feature selection. Specifically, Level1 data is first generated by stacking on the original data (called Level0 data) with base classifiers. Level1data is then classified by a second classifier (denoted by C) with feature selection using GA. The advantage of applying GA on Level1 data is that it has lower dimension and is more uniformity than Level0 data. We conduct experiments on both 18 UCI data files and CLEF2009 medical image database to demonstrate superior performance of our model in comparison with several popular combining algorithms.
展开▼