首页> 外文OA文献 >Prediction of filamentous sludge bulking using a state-based Gaussian processes regression model
【2h】

Prediction of filamentous sludge bulking using a state-based Gaussian processes regression model

机译:基于状态的高斯过程回归模型预测丝状污泥膨胀

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Activated sludge process has been widely adopted to remove pollutants in wastewater treatment plants (WWTPs). However, stable operation of activated sludge process is often compromised by the occurrence of filamentous bulking. The aim of this study is to build a proper model for timely diagnosis and prediction of filamentous sludge bulking in an activated sludge process. This study developed a state-based Gaussian Process Regression (GPR) model to monitor the filamentous sludge bulking related parameter, sludge volume index (SVI), in such a way that the evolution of SVI can be predicted over multi-step ahead. This methodology was validated with SVI data collected from one full-scale WWTP. Online diagnosis and prediction of filamentous bulking sludge with real-time SVI prediction was tested through a simulation study. The results showed that the proposed methodology was capable of predicting future SVIs with good accuracy, thus providing sufficient time for predicting and controlling filamentous sludge bulking.
机译:活性污泥工艺已被广泛采用以去除废水处理厂(WWTP)中的污染物。但是,活性污泥工艺的稳定运行通常会因丝状膨松的发生而受到损害。这项研究的目的是建立一个适当的模型,用于及时诊断和预测活性污泥过程中丝状污泥的堆积。这项研究开发了一种基于状态的高斯过程回归(GPR)模型,以监控与丝状污泥膨胀相关的参数污泥体积指数(SVI),从而可以预测SVI的演变过程。从一个完整的污水处理厂收集的SVI数据验证了该方法。通过模拟研究测试了具有实时SVI预测的丝状填充污泥的在线诊断和预测。结果表明,所提出的方法能够准确预测未来的SVI,从而为预测和控制丝状污泥的膨胀提供了足够的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号