首页> 外文OA文献 >Stepping Stone Detection for Tracing Attack Sources in Software-Defined Networks
【2h】

Stepping Stone Detection for Tracing Attack Sources in Software-Defined Networks

机译:跟踪软件定义网络中攻击源的垫脚石检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stepping stones are compromised hosts in a network which can be used by hackers and other malicious attackers to hide the origin of connections. Attackers hop from one compromised host to another to form a chain of stepping stones before launching attack on the actual victim host. Various timing and content based detection techniques have been proposed in the literature to trace back through a chain of stepping stones in order to identify the attacker. This has naturally led to evasive strategies such as shaping the traffic differently at each hop. The evasive techniques can also be detected. Our study aims to adapt some of the existing stepping stone detection and anti-evasion techniques to software-defined networks which use network function virtualization. We have implemented the stepping-stone detection techniques in a simulated environment and uses Flow for the traffic monitoring at the switches. We evaluate the detection algorithms on different network topologies and analyze the results to gain insight on the effectiveness of the detection mechanisms. The selected detection techniques work well on relatively high packet sampling rates. However, new solutions will be needed for large SDN networks where the packet sampling rate needs to be lower.
机译:垫脚石是网络中受到威胁的主机,黑客和其他恶意攻击者可以使用它们来隐藏连接源。攻击者从一个受感染的主机跳到另一个主机,形成一连串的垫脚石,然后对实际的受害主机发起攻击。在文献中已经提出了各种基于时间和内容的检测技术,以追溯到一连串的踏脚石,以便识别攻击者。这自然导致了规避策略,例如在每个跃点上对流量进行不同的调整。规避技术也可以被检测到。我们的研究旨在使一些现有的垫脚石检测和反逃避技术适应使用网络功能虚拟化的软件定义网络。我们已经在模拟环境中实现了踏脚石检测技术,并将Flow用于交换机的流量监控。我们评估不同网络拓扑上的检测算法,并对结果进行分析,以深入了解检测机制的有效性。所选的检测技术在相对较高的数据包采样率上效果很好。但是,对于数据包采样率需要较低的大型SDN网络,将需要新的解决方案。

著录项

  • 作者

    Bhattacherjee Debopam;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号