首页> 外文OA文献 >Statistical Estimation of Wild Animal Population in Finland: A Multiple Target Tracking Approach
【2h】

Statistical Estimation of Wild Animal Population in Finland: A Multiple Target Tracking Approach

机译:芬兰野生动物种群的统计估计:多目标跟踪方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Control and management of wild animals, especially large carnivores, is an important task for game and wildlife management authorities all over the world. Central to the scheme of wild animal conservation is the population size estimation methodology which depends on the used data sampling technique. The index based data sampling method has been found suitable in the case of large carnivores. On the other hand, telemetry data has been used to learn the individual movement of animals. Subsequently, mathematical modeling is utilized in order to learn both animal population dynamics and animal movement behavior. In that context, stochastic state-space models have proved to be appropriate for handling uncertainty that occurs in the process and observation models. This thesis provides a novel approach for the estimation of wild animal population. We utilize the state-space modeling framework as well as animal movement models on an unconventional observation and index based dataset. We formulate the problem as a conditionally linear Gaussian state-space model and recursively estimate the state of the animals. More specifically, we reformulate the problem as a special case of multiple target tracking, which can be solved by using Bayesian optimal filtering methodology. The solution to the problem of tracking an unknown number of targets is exactly applicable to our animal observation datasets.
机译:对野生动物,特别是大型食肉动物的控制和管理,是全世界游戏和野生动植物管理机构的一项重要任务。野生动物保护计划的核心是人口规模估算方法,该方法取决于所使用的数据采样技术。已经发现基于索引的数据采样方法适用于大型食肉动物。另一方面,遥测数据已用于了解动物的个体运动。随后,利用数学建模来学习动物种群动态和动物运动行为。在这种情况下,事实证明,随机状态空间模型适合处理过程和观察模型中发生的不确定性。本文为野生动物种群的估计提供了一种新方法。我们在非常规观测和基于索引的数据集上利用状态空间建模框架以及动物运动模型。我们将该问题公式化为条件线性高斯状态空间模型,然后递归估计动物的状态。更具体地说,我们将问题重新表述为多目标跟踪的特例,可以使用贝叶斯最佳滤波方法解决该问题。跟踪未知数量目标的问题的解决方案完全适用于我们的动物观测数据集。

著录项

  • 作者

    Abbas Mudassar;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号