首页> 外文OA文献 >Load classification and appliance fingerprinting for residential load monitoring system
【2h】

Load classification and appliance fingerprinting for residential load monitoring system

机译:住宅负荷监控系统的负荷分类和设备指纹识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Previous work on residential load monitoring has attempted to address different requirements including the systematic collection of information about electric power consumption for load research purpose, the provision of a detailed consumption report to facilitate energy conservation practices and the monitoring of critical loads for fault diagnostics. This work focuses on developing methods for appliance fingerprinting that is foreseen to be an integral part of an automatic residential load monitoring system. Various approaches outlined in previous research form the basis for the concepts developed in this thesis. In addition, an extensive series of measurement work was performed on several household appliances in order to acquire the necessary operation data for building the technique and also to explore the extent up to which residential loads can be categorized into distinct groups. The fingerprinting process proposed in this work employs three main phases: feature extraction of electrical attributes, event detection and pattern recognition. Test results obtained at different stages of the work using the measurement data are also discussed in detail. Such studies are necessary to enable utilities to manage their networks reliably and efficiently, and also to encourage the active participation of consumers in energy conservation programs.
机译:先前有关住宅负载监控的工作试图解决不同的需求,包括系统地收集有关电力消耗信息以用于负载研究目的,提供详细的消耗报告以促进节能实践以及监控关键负载以进行故障诊断。这项工作的重点是开发用于设备指纹识别的方法,预计该方法将成为住宅自动负荷监控系统的组成部分。先前研究中概述的各种方法构成了本文提出的概念的基础。另外,对几种家用电器进行了一系列广泛的测量工作,以获取构建该技术所需的操作数据,并探索可将住宅负荷分为不同类别的程度。在这项工作中提出的指纹识别过程采用三个主要阶段:电属性的特征提取,事件检测和模式识别。还详细讨论了使用测量数据在工作的不同阶段获得的测试结果。这样的研究对于使公用事业公司能够可靠,有效地管理其网络,以及鼓励消费者积极参与节能计划是必要的。

著录项

  • 作者

    Fitta Manyazewal Tesfaye;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号