首页> 外文OA文献 >Discovering spatio-temporal relationships a case study of risk modelling of domestic fires
【2h】

Discovering spatio-temporal relationships a case study of risk modelling of domestic fires

机译:发现时空关系-以家庭火灾风险模型为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A systematic risk analysis for mitigation purposes plays a crucial role in the context of emergency management in modern societies. It supports the planning of the general preparedness of the rescue forces and thus enhances public safety. This study applies the principles of knowledge discovery and data mining to support the development of a risk model for fire and rescue services. Domestic fires, which are a serious threat in an urban environment, are selected to demonstrate the methods. The aim of the research is to identify important factors that contribute to the probability of the occurrence of domestic fires. Various physical and socio-economic conditions in the background environment are analysed to provide an insight into the distribution of domestic fires in relation to underlying factors. Following the cross-disciplinary nature of data mining, this study offers a set of distinct methods that share the same goal - to identify patterns and relationships in data. The methods originate in different scientific fields, such as information visualisation, statistics, or artificial intelligence. Each of them reveals different aspects of the existing relations, which supports an understanding of the phenomenon and thus expands the expert knowledge. The application of data mining techniques is not straightforward because of the specific nature of geospatial data. This study documents the analysis process in order to provide guidelines for potential future users. It considers the suitability of the methods to handle spatial and spatio-temporal data with special attention to the GIS-motivated conceptualisation of the problem being analysed. Furthermore, the requirements for the user to be able to apply the methods successfully are discussed, as is the available software support.
机译:在现代社会中,用于缓解目的的系统化风险分析在应急管理中起着至关重要的作用。它支持规划救援部队的总体准备工作,从而增强公共安全。本研究运用知识发现和数据挖掘的原理来支持消防和救援服务风险模型的开发。选择了在城市环境中构成严重威胁的家庭火灾来演示该方法。该研究的目的是确定导致家庭火灾发生概率的重要因素。对背景环境中的各种物理和社会经济条件进行了分析,以提供与潜在因素有关的家庭火灾分布的见解。遵循数据挖掘的跨学科性质,此研究提供了一组共享相同目标的不同方法-识别数据的模式和关系。这些方法起源于不同的科学领域,例如信息可视化,统计或人工智能。它们每个都揭示了现有关系的不同方面,这有助于对现象的理解,从而扩展了专家知识。由于地理空间数据的特殊性质,数据挖掘技术的应用并不简单。本研究记录了分析过程,以便为将来的潜在用户提供指导。它考虑到了处理空间和时空数据的方法的适用性,并特别注意了GIS驱动的被分析问题的概念化。此外,还讨论了用户能够成功应用方法的要求,以及可用的软件支持。

著录项

  • 作者

    Spatenková Olga;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号