首页> 外文OA文献 >Virtual Machine Management for Efficient Cloud Data Centers with Applications to Big Data Analytics
【2h】

Virtual Machine Management for Efficient Cloud Data Centers with Applications to Big Data Analytics

机译:适用于大数据分析应用程序的高效云数据中心的虚拟机管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Infrastructure-as-a-Service (IaaS) cloud data centers offer computing resources in the form of virtual machine (VM) instances as a service over the Internet. This allows cloud users to lease and manage computing resources based on the pay-as-you-go model. In such a scenario, the cloud users run their applications on the most appropriate VM instances and pay for the actual resources that are used. To support the growing service demands of end users, cloud providers are now building an increasing number of large-scale IaaS cloud data centers, consisting of many thousands of heterogeneous servers. The ever increasing heterogeneity of both servers and VMs requires efficient management to balance the load in the data centers and, more importantly, to reduce the energy consumption due to underutilized physical servers. To achieve these goals, the key aspect is to eliminate inefficiencies while using computing resources. This dissertation investigates the VM management problem for efficient IaaS cloud data centers. In particular, it considers VM placement and VM consolidation to achieve effective load balancing and energy efficiency in cloud infrastructures. VM placement allows cloud providers to allocate a set of requested or migrating VMs onto physical servers with the goal to balance the load or minimize the number of active servers. While addressing the VM placement problem is important, VM consolidation is even more important to enable continuous reorganization of already-placed VMs on the least number of servers. It helps create idle servers during periods of low resource utilization by taking advantage of live VM migration provided by virtualization technologies. Energy consumption is then reduced by dynamically switching idle servers into a power saving state. As VM migrations and server switches consume additional energy, the frequency of VM migrations and server switches needs to be limited as well. This dissertation concludes with a sample application of distributed computing to big data analytics.
机译:基础架构即服务(IaaS)云数据中心通过Internet以虚拟机(VM)实例的形式提供计算资源作为服务。这允许云用户基于“按需付费”模型来租用和管理计算资源。在这种情况下,云用户可以在最合适的VM实例上运行其应用程序,并为使用的实际资源付费。为了满足最终用户不断增长的服务需求,云提供商现在正在构建越来越多的大规模IaaS云数据中心,其中包括数千个异构服务器。服务器和VM的异质性不断提高,需要进行有效的管理以平衡数据中心的负载,更重要的是,由于未充分利用物理服务器而降低了能耗。为了实现这些目标,关键是消除使用计算资源时的低效率。本文研究了高效的IaaS云数据中心的虚拟机管理问题。特别是,它考虑了VM的放置和VM的合并以在云基础架构中实现有效的负载平衡和能源效率。 VM放置使云提供商可以将一组请求的或正在迁移的VM分配到物理服务器上,以平衡负载或最小化活动服务器的数量。尽管解决VM放置问题很重要,但VM整合对于在最少数量的服务器上实现对已放置VM的连续重组的重要性更为重要。通过利用虚拟化技术提供的实时VM迁移,它有助于在资源利用率较低的时期创建空闲服务器。然后,通过将空闲服务器动态切换到省电状态来减少能耗。随着VM迁移和服务器交换机消耗更多的能量,VM迁移和服务器交换机的频率也需要受到限制。本文以分布式计算在大数据分析中的示例应用为结尾。

著录项

  • 作者

    Nguyen Trung Hieu;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号