首页> 外文OA文献 >Improving the performance of adaptive optics systems with optimized control methods
【2h】

Improving the performance of adaptive optics systems with optimized control methods

机译:通过优化控制方法提高自适应光学系统的性能

摘要

This thesis investigates control aspects of adaptive optics (AO), a technology to compensate the rapidly changing distortions that affect light after propagating through the turbulent atmosphere. In particular, two different astronomical applications are considered: partial correction of wide fields (needed for surveys) and high accuracy correction of very small fields (needed for detecting faint companions, like exoplanets). The performance of typical current and future AO systems has been analyzed through numerical simulations, and methods to improve their performance have been studied. In the first part of the thesis, an optimum compensation of wide fields has been shown to be achievable by traditional control methods. The latter part of the thesis concentrates on the nonlinearity issues of a pyramid wavefront sensor (P-WFS) shown in earlier works to be a promising choice for the accurate small field compensation (extreme adaptive optics) due to its better sensitivity for low frequency wavefront distortions. Two novel methods to deal with the P-WFS nonlinearity effects are presented in this thesis. The first is a theoretical model based and computationally intensive method based on directly inverting the P-WFS signal model. The second method is a heuristic, computationally efficient method combining the a priori information of the atmosphere, the P-WFS signal model and experimentally obtained interaction matrices describing the system behavior. It is shown in simulations that the latter method, based on compensating the P-WFS loss of sensitivity, dramatically improves the system performance (compared to the conventional AO system control and wavefront reconstruction) in conditions where the measured wavefront aberrations are large (bad seeing and short sensing wavelengths).
机译:本文研究了自适应光学(AO)的控制方面,该技术可补偿在湍流中传播后影响光的快速变化的畸变。特别是考虑了两种不同的天文应用:对宽视场进行部分校正(需要进行测量)和对小视场进行高精度校正(需要用于检测微弱的同伴,如系外行星)。通过数值模拟分析了当前和未来典型AO系统的性能,并研究了改善其性能的方法。在论文的第一部分,通过传统的控制方法可以实现对宽视场的最佳补偿。本文的后半部分集中于早期工作中显示的金字塔波前传感器(P-WFS)的非线性问题,由于其对低频波前具有更高的灵敏度,因此是准确的小场补偿(极端自适应光学)的有希望的选择。扭曲。本文提出了两种解决P-WFS非线性影响的新方法。第一种是基于理论模型的计算密集型方法,基于直接反转P-WFS信号模型。第二种方法是结合大气先验信息,P-WFS信号模型和通过实验获得的描述系统行为的交互矩阵的启发式计算高效方法。在仿真中显示,后一种方法基于补偿P-WFS的灵敏度损失,在测量的波前像差大(视力不好)的条件下,可以显着改善系统性能(与传统的AO系统控制和波前重建相比)和短的感测波长)。

著录项

  • 作者

    Korkiakoski Visa;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类
  • 入库时间 2022-08-31 15:31:24

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号